2007 Vol. 9, No. 13 2597-2600

The Total Synthesis of Psymberin

Xianhai Huang,* Ning Shao, Anandan Palani, Robert Aslanian, and Alexei Buevich

Department of Chemical Research, Schering-Plough Research Institute, Kenilworth, New Jersey 07033

xianhai.huang@spcorp.com

Received May 11, 2007

ABSTRACT

The total synthesis of a new member of the pederin family of natural products, psymberin 1, was accomplished. Using a recently reported novel and efficient Phl(OAc)₂ mediated oxidative entry to 2-(*N*-acylaminal)-substituted tetrahydropyrans as the key step, this total synthesis was executed in a convergent and efficient manner. The longest linear sequence of this synthesis was 22 steps starting from known 6.

After almost a decade of effort, two research groups independently reported in 2004 the isolation and structure elucidation of a potent anticancer marine natural product. It was named psymberin (1) and irciniastatin A by each group, respectively. The C_4 stereochemistry was undefined. This compound is a new member of the pederin family 1a in that it shares the common pederin α -cyclic-oxy N-acyl aminal core (C_6 – C_{13} , Scheme 1). However, its structure is unique within this class as this core is flanked by a unique dihydroisocoumarin unit and an unusual unsaturated acyclic side chain. More importantly, psymberin is an extremely potent and selective cytotoxin compared to other pederin natural products. 1a Therefore, the total synthesis of psymberin has drawn much attention from the synthetic chemistry community. 2 In 2005, an elegant total synthesis of this natural

Scheme 1. Retrosynthetic Analysis of Psymberin with Use of an Oxidative Cyclization as the Key Step

product was reported by De Brabander's group,^{2a} leading to a complete stereochemical assignment of psymberin with an *S*-configuration at C₄ and the conclusion that psymberin and irciniastatin A were identical. To assemble the synthetically challenging pederin common core, we recently reported³ a novel synthesis of 2-(*N*-acylaminal)-substituted tetrahydro-

^{(1) (}a) Cichewicz, R. H.; Valeriote, F. A.; Crews, P. *Org. Lett.* **2004**, 6, 1951 and references cited therein. (b) Pettit, G. R.; Xu, J. P.; Chapuis, J. C.; Pettit, R. K.; Tackett, L. P.; Doubek, D. L.; Hooper, J. N. A.; Schmidt, J. M. *J. Med. Chem.* **2004**, *47*, 1149.

⁽²⁾ Total synthesis, see: (a) Jiang, X.; Garcia-Fortanet, J.; De Brabander, J. K. J. Am. Chem. Soc. 2005, 127, 11254 and references cited therein. Formal total synthesis, see: (b) Ning, S.; Kiren, S.; Williams, L. J. Org. Lett. 2007, 9, 1093. Fragment syntheses, see: (c) Rech, J. C.; Floreancig, P. E. Org. Lett. 2005, 7, 5175. (d) Green, M. E.; Rech, J. C.; Floreancig, P. E. Org. Lett. 2005, 7, 4117. (e) Kiren, S.; Williams, L. J. Org. Lett. 2005, 7, 2905. Analogue synthesis, see: (f) Jiang, X.; Williams, N.; De Brabander, J. K. Org. Lett. 2007, 9, 227.

pyrans from enamides using PhI(OAc)₂ as an oxidant. Herein, we present a convergent total synthesis of psymberin using this new methodology.

According to our retrosynthetic analysis (Scheme 1), the core α -cyclic-oxy N-acyl aminal portion would be obtained from N-acyl enamine 2 through the use of the PhI(OAc)₂-mediated oxidative cyclization reaction. Enamide 2 potentially would be synthesized from 3, 4, and 5 through a CuI-mediated coupling reaction to form the N_7 - C_8 bond and a substrate-controlled Mukaiyama aldol reaction to connect C_{14} - C_{15} .

Our synthesis started with the preparation of 5 (Scheme 2). Compound 6^4 was converted to 7 through triflate

Scheme 2. Synthesis of the Dihydroisocoumarin Unit (a) Tf2O, pyridine, CH₂Cl₂, 0 °C: (b) Pd(PPh₃)₄, allylSnBu₃, LiCI, THF, reflux, TIPSO 95% over 2 steps; (c) BBr₃, CH₂CI₂, -78 °C CO₂Et to 0 °C to rt. 85%: ÓМе ÓTIPS (d) TIPSOTf, 2,6-lutidine 6 CH2Cl2, 95%; (e) OsO₄, NMO, THF/H₂O (10/1), then NaIO₄, MeOH/H₂O (9/1), 88%; dr > 50.1(f) cis-butene, n-BuLi-KOt-Bu, (-)-Ipc2BOMe, BF3.OEt2, 89%; (g) Amberlyst 15, CH2Cl2, 99%; TIPSO (h) OsO₄, NMO, then NaIO₄, 90%. CO₂Et TIPSÓ ö ÖTIPS 8

formation, allylation, deprotection of the phenolic methyl groups, and protection of the diphenol with TIPS groups. Alkene **7** was treated with $OsO_4/NaIO_4$ followed by a classical Brown crotylation reaction⁵ to provide *syn-8* with excellent diastereoselectivity (dr > 50:1) and 90% ee, which was determined by chiral OD HPLC. Hydroxyester **8** was converted to **5** through lactone formation in the presence of acid and cleavage of the double bond. In this route, aldehyde **5** was synthesized from **6** in 8 steps (53% overall yield) with excellent diastereoselectivity and good enantioselectivity.

The central linker **4** was quickly synthesized in 89% overall yield in 3 steps from the commercially available aldehyde **9** (Scheme 3). A highly enantioselective Masamune aldol condensation between **9** and **10** gave the secondary alcohol as a single enantiomer (er > 50:1) by Mosher ester analysis with the desired R-configuration, 6 which was subsequently protected with a TBS group to give **11**. Treatment

Scheme 3. Synthesis of Ketone 4 (a) BH₃.THF, Ligand 13, CH₃CH₂CN, 95%; (b) TBSOTf, 2.6-lutidine. ÖEt CH2Cl2, 99%; 11 er > 50:1 (c) TMSCH₂Li, pentane, (d) TMSOTf, Et₃N, OTBS BnO CH2Cl2, 100%. TMSC 12 NHSO₂*p-*Tol MeC

of **11** with TMSCH₂Li in pentane⁷ gave ketone **4** in a single operation and was converted to enol ether **12** by treatment with TMSOTf/Et₃N.

Ligand 13

'CO2H

For the unsaturated acyclic side chain (Scheme 4), 3⁸ was initially designed to be used as the building block; however, we later found out that the alkene interfered with our PhI(OAc)₂-mediated oxidative cyclization reaction. We then proceeded with the synthesis of 17^9 in which the double bond was temporarily masked. Regioselective epoxide opening of 14 with isopropenylmagnesium bromide gave a secondary alcohol that was protected as a methyl ether with Me₃OBF₄ to give 15. Ether 15 was converted to 16 in 4 steps via hydroboration, benzylation, deprotection of the TBS group, and Swern oxidation. Aldehyde 16 underwent cyanohydrin formation (dr = 2:1), and the free alcohol was protected as a TPS ether. The nitrile group was hydrolyzed under very mild conditions¹⁰ to give amide 17 (isomers were easily separated at this step). To this point, side chain 17 was prepared in an overall 27% yield in 9 steps.

With all three subunits in hand, we proceeded to complete the synthesis (Scheme 5). A substrate-controlled aldol reaction 11,2c between 5 and 12 gave ketone 18 in good yield (76% as pure isomer (for two isomers: 91%, dr = 5:1)). Chelation-controlled reduction 12 of ketone 18 provided a

2598 Org. Lett., Vol. 9, No. 13, 2007

⁽³⁾ Huang, X.; Shao, N.; Palani, A.; Aslanian, R. Tetrahedron Lett. 2007, 48, 1967.

⁽⁴⁾ **6** was prepared from commercially available 2,4,6-trimethoxytoluene in two steps in 46% yield according to literature procedure. Solladie, G.; Gehrold, N.; Maignan, J. *Tetrahedron: Asymmetry* **1999**, *10*, 2739.

⁽⁵⁾ Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.

⁽⁶⁾ Parmee, E. R.; Tempkin, O.; Masamune, S. J. Am. Chem. Soc. 1991, 113, 9365.

⁽⁷⁾ Mulzer, J.; Mantoulidis, A.; Ohler, E. J. Org. Chem. 2000, 65, 7456.

⁽⁸⁾ Although we did not proceed with compound 3 for the total synthesis, it was prepared efficiently from 14 in 7 steps (Scheme 4) and served as a vehicle to determine the correct sterochemistry at C_5 by spectrum comparison with the psymberin side chain.^{2d,e}

⁽⁹⁾ All compounds containing this side chain were a 1:1 mixture of two isomers (R, S) at C_2 except when otherwise indicated.

 ⁽¹⁰⁾ Maffioli, S. I.; Marzorati, E.; Marazzi, A. Org. Lett. 2005, 7, 5237.
(11) Evans, D. A.; Allison, B. D.; Yang, M. G.; Masse, C. E. J. Am. Chem. Soc. 2001, 123, 10840 and references cited therein.

⁽¹²⁾ Evans, D. A.; Hoveyda, A. H. J. Org. Chem. 1990, 55, 5190.

Synthesis of the Acyclic Side Chain

secondary alcohol at C₁₃ with excellent diastereoselectivity (dr = 15:1), ¹³ which was transformed to **19** (E/Z = 5/1) via bis-acetylation at C₁₃ and C₁₅, de-benzylation, Dess-Martin oxidation, and Takai vinyl iodide formation.¹⁴ Enamide 20 $(E/Z = 5/1)^{15}$ was synthesized from **19** in three operations: (1) coupling of 19 with 17 by using CuI¹⁶ to give protected N-acyl enamine, (2) removal of the C_{13} , C_{15} acetate and O_{21} TIPS groups with NaOMe/MeOH, and (3) selective acetylation of O₂₁. As expected, enamide 20 cyclized slowly but smoothly with use of the PhI(OAc)2-mediated cyclization reaction³ to give a total of 72% yield of isolated products (60% of two major pairs of diastereomers and 12% of other possible isomers). The major two pairs of diastereomers (30% isolated yield each, C_8 , $C_9 = S$, S and C_8 , $C_9 = R$, R^{17}) were separately acetylated at C₁₅ and debenzylated to give alcohols 21 and epi-21. The C₁ terminal double bond was revealed by converting 21 and epi-21 to the o-nitrophenyl selenide followed by treatment with H₂O₂ at 50 °C.¹⁸ Upon treatment with TBAF at 50 °C, a global deprotection was realized to

Scheme 5. Completion of the Total Synthesis

give the final products 1 and epi-1. The spectral data (1H, ¹³C, optical rotation, MS) of synthetic 1 matched exactly with those reported of natural psymberin.^{1,2a}

In conclusion, our novel PhI(OAc)2-mediated oxidative cyclization method3 was successfully applied to the total synthesis of psymberin, and this further confirmed the assignment of the configuration at C₄.^{2a} The synthesis was

Org. Lett., Vol. 9, No. 13, 2007 2599

⁽¹³⁾ Relative stereochemistry at C11, C13, and C15 was determined by preparing the C₁₁, C₁₃ acetonide and the C₁₃, C₁₅ acetonide from the corresponding hydroxy derivatives of 18.

⁽¹⁴⁾ Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108,

⁽¹⁵⁾ It is not necessary to separate the E and Z isomers since they work equally well in the oxidative cyclization reaction. See ref 3.

⁽¹⁶⁾ Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003,

⁽¹⁷⁾ The R,R stereochemistry at C_8 , C_9 was assigned by using COSY, NOESY, HSQC, and HMBC experiments with the final product epi-1, see the Supporting Information.

⁽¹⁸⁾ Grieco, P. A.; Takigawa, T.; Schillinger, W. J. J. Org. Chem. 1980, 45, 2247.

executed in a convergent manner by preparing building blocks **4**, **5**, and **17**. The longest linear sequence of this synthesis is 22 steps starting from the known phenol **6**. This practical oxidative cyclization can be applied to the synthesis of other pederin family natural products as well as analogues of psymberin, and will be reported in due course.

Acknowledgment. We thank Dr. Craig Boyle at SPRI for proofreading our manuscript and Drs. Catherine Strader,

John Piwinski, and Satwant Narula at Schering-Plough Research Institute (SPRI) for their strong support of the postdoctoral program.

Supporting Information Available: Experimental details and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL071068N

2600 Org. Lett., Vol. 9, No. 13, 2007